7. Disposal

Principles: containment*, dilution, multiple barriers*,
ALARA

Disposal options: Where? land, ocean, ice, space; Depth?
surface, medium, great; When? 10y, 100 y, 1000 y; Form?
spent fuel, glass, synthetic rock; Geometry? boreholes,
repository; Container? metal, ceramic

Site requirements: remoteness, release rate, $, reversibility,
radiological safety;

Geological D*: age, stability, shielding, GW, slow;
options*: repository (1, n-levels), boreholes

Alternative D: space, islands, ocean, technological, storage
(N)

Space*: $, risk, Challenger 1986/1, russian satellite 1978;
Ice sheet*: remoteness, self-sinking, $, legal constraint,
isolation;

Ocean**: self-burying, sedimentation zones, boreholes, +:R,
dilution, RS -: $, LDC

Islands: barriers: rock + ocean, little GW, $; continental I:
igneous, metamorphic, sedimentary rocks; oceanic I: basalt;
island arcs: plate boundaries, andesitic volcanism;

rock melting*: radiogenic heat 100 kW/m’, modelling of
magma

transmutation: I-129, Tc-99,$, radiation exposure, more
LLW+LLW

very deep hole*: T

Release processes: caused by water, waste, man, nature



man: inadvertent intrusion, drilling, metallic cone, mining,
records; waste: radiation damage, radiolysis, thermal
(expansion, convection), criticality; nature: slow processes
(sea level change, erosion, tectonic movements, magma
intrusion, diapirism, glaciation), fast processes (earthquakes,
volcanic eruptions, meteorite impact, flooding, hurricanes);
groundwater: nominal case + other causes

Normal case*: near-field + far-filed::: GW infrusion,
degradation of engineered barriers, RI migration; backfill,
swelling, seals, corrosion, radiolysis; container failure, waste
dissolution, colloids; transport path, sorption, precipitation
NFE factors : T, stress field, hydrogeology, chemistry::::
T: heat output*, depth 1 km t =25-50 C, T profile of NF¥,
heat transfer calc., T max 100 C (US 250 C), corrosion;
hydrostatic, lithostathic S, 1 km : 1000 atm, interconnection
of fissures, anisotropy, horizontal = 4X vertical + swelling
S max 12000 atm + heat stress - spalling, fracturing, stress
readjustment; local, regional, hydraulic conductivity; pH,
Eh, ionic force, solubilities, thermodynamic calc., computer
codes, speciation, colloids, microorganisms, compiexants;
Performance of EB: buffer, backfill, container, waste
matrix::::: ?7: water access + chemistry, ion exchange,
properties ( thermal conductivity, plasticity, porosity,
permeability, swelling pressure, redox potential, sorption,
Kd), reactions (MM + K - illite), bentonite clay (Na
montmorillonite) + quartz, P = 1E-13 m/s, buffers pH>7,
FeSiO4; ? IE,. cement grout, powdered basalt, air; ?:



protection 500 -10 000 y, handling, shielding, types (M,
ceramic, M+C), materials (Cu, Ti, SS, Fe), sealing
techniques, corrosion (complexes, electrochemical
techniques, pitting, SCC, Radiation, H2, O2); glass, spent
fuel:: leach testing (static, dynamic, Soxhlet, T, realistic);
kinetics*, slow at 25 C, fast at 200 C;

Composition of high-level borosilicate waste glass.
Container weight = 480 kg; glass weight = 405 kg/container.
Added oxides (%) : SiO, 45, B,O, 14, AL,O, 5, Na,O 10,
CaO 4, Fe,0O, 3, NiO 04, Cr,0, 0.5, P,0, 0.3, ZrO, 1, Li,O
2, ZnO 2.5.; Fission product oxides : 11.1%, Actinide
oxides : 0.9%, Metallic particles 0.7% Actinides
g/container: Am 423, Cm 33, Pu 80, Np 573, U 1920.
Spent fuel: UO2, FP diluted, redox, carbonates, 25 C + 8 y:
MD = 1E-6/d to 1E-9/d, grain boundaries: Cs,], Sr, colloids
Modelling NF: granite, 1.2 km, Fe 25 cm thick, GW: 4200
/'y, T max 160 C, Material inventory (per waste container)
in the near-field of a reference Swiss high-level waste
repository*

Material Volume (m*) Mass (kg)
Glass 0.15 405
Steel-fabrication container 0.01 75
Fabrication void 0.03 -
Canister 0.9 6500

(a) Bentonite (dry) 32.7 88000

(b) Pore space (water-filled) 20.1 20000 |
corrosion 1300 y, ph 7-8.5, 1E-7 g/em?*d 1E-5 of



inventory/y, dissolution in 0.7 l/canister/y

Fission activation product inventory 1000 years after
disposal in the Swiss reference HLW repository.

Release rate limited by: dissolution solubility

RI T-y I-mol Molly Bgly Molly Bgqly
10-Be 1.6E+6 2.6E-5 5.1E-10 4.2E+0 7.1E-5 5.9E+5
14-C 5.7E+3 1.9E-5 3.7E-10 8.5E+2 high high
41-Ca 1.3E+5 8.7E-5 1.7E-9 1.7E+2 7.1E-3 7.2E+8
59-Ni 8.0E+4 1.1E-2 2.2E-7 3.6E+4 7.1E-5 1.2E+7
79-Se 6.5E+4 9.3E-2 1.8E-6 3.7E+5 7.1E-9 1.4E+3
90-Sr 29 6.1E-10 1.2E-14 5.5E+0 7.1E-5 3.2E+10
93-Zr 1.5E+6 1.1E+1 2.2E-4 1.9E+ 6 7.1E-10 6.3E+0 .
94-Nb 2.0E+4 3.9E-4 7.6E9 5.0E+3 7.1E-9 4.7E+3
99-T¢ 2.1E+5 1.1E+1 2.2E-4 1.4E+7 2.3E-8 1.4E+3
107-Pd 6.5E+6 2.5 49E-5 1.0E+5 7.1E-9 1.4E+1
126-Sn 1.0E+5 3.6E-1 7.0E-6 9.3E+5 7.1E-10 9.4E+1
129-1 1.6E+7 1.8E-3 3.5E-8 2.9E+1 high high
135-Cs 2.3E+6 3.2 6.2E-5 3.6E+5 high high
137-Cs 30 2.0E-8 3.9E-13 1.7E+2 high high
147-Sm 1E+11 1.5 29E-5 3.5 7.1E-9 8.5E-4
I = Inventory |

P = porosity (0.38), D = density (2760 kg/m’)

retardation : R=1+ (1-P)*D*Kd/P =1 + 4500 Kd; 24<R
<23000, conc. > 10 Bg/l Cs-135, Se-79, Pd-107, Tc-99, Sn-
126. | .
Limitations: simplification, radiolytic oxidants, colloids,



microorganisms
Far-field: massive physical + chemical buffer, path length,
migration velocity; salt*, clay*, granite*

RI migration: advection, diffusion; water table(m - Dm),
NTS Hm, hydraulic pressure or head* {m} (topography,
conductivity (fractures)), Darcy law : Q=K*I*A; porous
media, channelling, effective porosity (clay P = 30%, EP =
5%), variability

Maximum and minimum values for the hydraulic
conductivity (HC), porosity (P), gradient (G), flux (F) and
velocity (V) of various sediments and crystalline rocks, in
typical environments which might be considered for disposal
DOSES.

Rocktypc Depth-m | HC-nmis | P G F - Vyhm? V - miy H

| Clay 0-100 0.1, 0.3,0.5 0.05,0.2 1.6.640 0.0005,1.28

| clay <100 IE-3,10 03,05 0.050.2 000264 | 5E-60.1
Shale 0-100 11,1000 0203 00502 166400 | 0.00821

| Shale <100 0.1,100 005025 | 0.0502 0.16,640 | 0.0032.6

Crystalline 0-100 1,100 0.01,0.05 0.001,0.1 0.03,320 0.003.6.4

Crystalline <100 0.01,10 0.001,0.01 0.001,0.1 0.0003,32 0.0003,3.2

Aquifer 10,1E+5 0.05,0.1 0.0005,0.01 1.6,32000 0.03,320 l
Transport models: HC, depth, near surface flow lines* ~100
y, deep lines 1E+4 - 1E+6 vy, islands - sea, Herzberg lens
flow ~0; physical dispersion*: dispersion coef., late arrivals,
tortuosity, 2D case - 3 parameters, 3 D - 6 p, isotropy,
percolation theory; diffusive retardation: rock P = 2% EP =

0.1% dead end pores*; chemical retardation*: precipitation,
sorption (cations), Kd, Pu, Tc, Np,




Migration in evaporites: impermeable, diapirism, flooding,
faults

The distribution of radionuclide ingestion doses over various
pathways for the Swiss Project 1985. The values are given
as a percentage of the total dose from each radionuclide, and
apply to the biosphere transport reference case used in the
assessment.

DW = Drinking water, RV = Root vegetables, * Short-lived
daughters taken into account, 1= less than 0.5%.

Summary of element retention in the Oklo fossil reactor
zones: Elements which mostly migrated: Kr, Sr, Mo, Ag,
Cq, I, X, Cs; Elements which were mostly retained : Y, Zr,
Nb, Rh, Pd, In, Sn, Sb, light REE, Po, Th, U, Np, Pu;
Elements which were locally redistributed : Rb,Tc, Ru,
heavy REE .
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Figure 4,2 Schematic illustration of the multi-barrier system of waste Eontainmchi;
instance the Swiss concept for disposal of high-level waste. Reproduced by permis.
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Figurc 4.3 Alternative cmplacement techniques for high-level waste containers in a
deep repository in hard rock. (a) The Swiss concept for in-tunnel disposal. (b) The
Swedish concept for disposal in shallow boreholes below the tunnel floor. Both
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Figure 4.4 Cutaway diagram of the Swedish concept for ¢
high-level waste repository at a depth of about 500 m in harc
crystalline basement rocks, using the container emplacemen
technique shown in Figurc 4.3(b) (courtesy of SKB)
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Figurc 4.6 The effect of various container separation distances on the maximum
temperature rise in the host-rock in a granite HLW repository. If the containers are less
than 15 mapart then a sharp risc in temperature occurs after about 100 years. Conversely
it can be seen that placing the containers any more than 20 m apart does not give any

advantage in terms of maximum repository temperatures. (For a cubic array of
19 x 19 % 19 containers of 1 kW initial heat outnut at time of disnosal: after Hodakinson.
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Figure 5.10 Schematic diagram of the ncar-ficld in the Swiss HLW repository,
aflter canister failure has occurred, assuming realistic evolution as opposed to the
conservative models discussed in the text (after McKinley, 1985a). Reproduced
by permission of Nagra, Switzerland
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igure 6.1 Schematic illustration of typical joint and fracture patterns in a bt
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Figurc 6.7 Cross-section of a typical salt dome (Rayburn’s dome in Louisiana, USA),
showing the contorted structurc of originally horizontal evaporite beds within the dome,
and the surrounding scdiments upthrust during the risc of the dome. The presence of
Quaternary scdiments on the top of the dome indicates that it has been exposed at the



Sea level

Figure 6.8 Simplificd, and highly schematic illustration of hydraulic *head’. If pipe:
were sunk into various points in the sandstone aquifer, then water would rise ir
them to the levels indicated in responsc to the head at each point. The hydraulic
gradicent, "A-A’, controls the direction and rate of groundwater flow in the aquifer
water moves down gradient. Pipes 1-3 could represent ordinary water wells
whercas 4-5 demonstrate what arc often looscly referred Lo as *artesian’ conditions
in a confined part of the aquifer. Wells at these points would overflow at the grounc
surface, The headsin the river (R) valley gravels (pipes X-Z) are close to the surface
and in this case the line showing the hydraulic gradient in this aquifer unit alsc
represents the water table, and the closely stippled area above it is the unsaturatec
zone. Nonc of these wells overflows. To the left of pipe 3, the heads in the sandstone
are higher than those in the gravels, and there is consequently a vertical hydraulic
gradient which would allow very slow scepage of groundwater from the sandstone
upwards through the intervening clay, into the gravels. If heads in the upper clay
formation were higher than those in the aquifers, then seepage of clay groundwater:
might occur both upwards and downwards into the gravels and sandstones. The
importance of knowing the heads through such a series of formations in order tc

predict directions and rates of groundwater movement is clear, Head is usually
measured in metres above sca-level
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Figure 6.13 Typical results of a very simple two-dimensional finite element model of
groundwater flow. A block of crystalline rock, with zero-flow boundaries assumed at the
base and sides, and hydraulic conductivity decrcasing progressively with depth. The
curvces arc cquipotentials (simply, lines of equal groundwatcr head), which can be seen to
be controlled by the topography. Groundwatcr would flow down a potential gradient,
that is at right angles to these cquipotentials. A borchole at A would encounter
progressively decreasing heads with depth, while one at B would fird similar head values
throughout the whole borchole. Some possible flow paths are shown. Flow volumes and

velocities will decrease markedly with depth. The repository situated on the right appears
ta be in a hetter nosition than the one on the left. as pathleneths are notentially both
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Figure 6.17 Microcracks and dead-end pores which may permit matrix diffusion in
fractured rocks (see text) :
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Figure 10.3 Radiation doses calculated in some important safety analyse
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